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ABSTRACT

It is likely that nearly all central galactic massive and supermassive black

holes are nonradiative: their accretion luminosities are orders of magnitude be-

low what can be explained by efficient black hole accretion within their ambient

environments. These objects, of which Sagittarius A* is the best-known exam-

ple, are also dilute (mildly collisional to highly collisionless) and optically thin.

In order for accretion to occur, magnetohydrodynamic instabilities must develop

that not only transport angular momentum, but also gravitational energy gen-

erated through matter infall, outwards. A class of new magnetohydrodynamical

fluid instabilities – the magnetoviscous-thermal instability (MVTI) (Islam 2012)

– was found to transport angular momentum and energy along magnetic field

lines through large (fluid) viscosities and thermal conductivities. This paper

describes the analogue to the MVTI, the collisionless magnetoviscous-thermal

instability (CMVTI), that similarly transports energy and angular momentum

outwards, expected to be important in describing the flow properties of hot, di-

lute, and radiatively inefficient accretion flows around black holes. We construct

a local equilibrium for MHD stability analysis in this differentially rotating disk.

We then find and characterize specific instabilities expected to be important in

describing their flow properties, and show their qualitative similarities to insta-

bilities derived using the fluid formalism. We conclude with further work needed

in modeling this class of accretion flow.

1. Introduction

Within the recent past, much progress has been made in characterizing the

important dynamics of accretion flows. The magnetorotational instability (Velikhov 1959;

2

LLNL-JRNL-639918



Chandrasekhar 1960) has been applied to accretion disks (Balbus & Hawley 1991) and been

shown to drive MHD fluid turbulence that can provide an outward angular momentum

flux and mass accretion rate consistent with astrophysical observations, as demonstrated

in a variety of numerical simulations (Hawley et al. 1996; Wardle 1999; Sano & Stone

2002; de Villiers & Hawley 2003; Fromang et al. 2004). However, there exists observational

evidence of hot dilute flows, in accretion about dim mass-starved supermassive black holes,

for which the mean free path is of the order of the system scale or larger. Chandra X-ray

observations by Baganoff et al. (2003) have resolved the inner 1” around the Sagittarius

A central black hole and demonstrated that the ion mean free path at its capture radius

is only a few times smaller than the system scale. The unambiguous detection of Faraday

rotation in the high- frequency radio emission about Sagittarius A (Aitken et al. 2000;

Bower et al. 2003; Marrone et al. 2005) implies that the magnetic field is very easily strong

enough to result in a gyrokinetic reduction in plasma dynamics. Estimates of mass accretion

from the ambient conditions about this object overestimate its bolometric luminosity by

approximately five orders of magnitude over radiatively efficient accretion (Narayan 2002),

implying that very little of the gravitational energy produced by mass accretion is radiated.

However, recent nonlinear local simulations, with limits on electron pressure anisotropy due

to gyrokinetic electron instabilities, show that the nonlinear development of the collisionless

MRI can turbulently heat electrons sufficiently to allow these flows to become radiative

(Sharma et al. 2007); accretion in collisionless environments, such as those around Sag. A*,

may naturally be radiative enough that the accretion rate must remain orders of magnitude

below the Bondi rate in order to explain their low luminosity. Regardless of whether this

accretion is radiatively inefficient, it is very likely that in the steady state these plasmas

are dilute, optically thin, and the bulk of their thermal energy lies with the protons.

Furthermore, MHD plasma turbulence that transports energy generated from accretion

may play an important role even in high-energy radiative, but collisionless, accretion flows.
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The fact that, very plausibly, these systems may be radiatively inefficient points to the

fact that these high energy, dilute plasmas are at least partially pressure supported; this

is in contrast to a large class of models of radiatively efficient classical accretion disks, in

which the accreting disk of matter remains geometrically thin and rotationally supported

due to the efficient radiation of energy perpendicular to the disk. Numerical simulations

of the MRI in a canonical black hole accretion flow (de Villiers & Hawley 2003; de Villiers

et al. 2003) tend to stabilize into thick disks. The large aspect ratio of these disks invites

an analysis of these disks with vertical disk structure included, or as a beginning a local

analysis in which dynamically important gradients of temperature and pressure govern the

nature of local instabilities.

A formulation of magnetized plasma dynamics that is especially well-suited for

collisionless or mildly collisional MHD plasma equilibrium and dynamics is that of Kulsrud’s

drift-kinetic approximation to the Boltzmann equation (Kulsrud 1983, 2005). To lowest

order the particle distribution function is characterized by dynamics only along magnetic

field lines, MHD conditions of quasi-neutrality with ions and electrons moving together,

and conservation of magnetic moment for particle distributions. Furthermore, it is expected

that additional dynamics that cannot be modeled through the Kulsrud formalism, such as

momentum and energy transfer processes resulting in temperature equilibration or electric

resistivity, may not be dynamically important to a first approximation.

For this problem we consider the following hierarchy of scales appropriate to

lowest-order gyro kinetic expansion: 1/T < ωpi � Ωci, 1/L < ωpi/c � ρi, where ωpi is

the ion plasma frequency, Ωci is the ion gyrofrequency, ρi is the ion gyroperiod, ωpi/c

is the inverse ion inertial depth, and L and T are the shortest length and fastest time

scales associated with this system. Densities are large enough that Alfvén velocities are

smaller than the speed of light, therefore relativistic MHD effects may be ignored. The

gravitational acceleration is purely due to that of the central object. We consider a plasma
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equilibrium where pressures parallel and perpendicular to the magnetic field are equal,

hence the equilibrium particle distribution for electrons and ions has one temperature. We

formulate the problem in a cylindrical geometry, where the axis of rotational lies along the

vertical axis. R̂, φ̂, and ẑ are unit vectors in the radial, azimuthal, and vertical directions,

respectively.

The organization of this paper is as follows: in §2 we discuss the variables and

nomenclature used in this paper; in §3, we use a form of the drift kinetic equation that

represents particle dynamics in a co-rotating frame, explicitly state the equilibrium we

choose in our local analysis, and include total MHD force balance and MHD induction

equations in a co-rotating frame. In §4 we justify and modify turbulent and average

wave quantities appropriate to characterize accretion (see, e.g., Balbus & Hawley (1998);

Balbus (2004)) in dilute and radiatively inefficient magnetized flows. In §5 we consider

the stability of hot dilute rotating plasmas to a new instability, the collisionless analogue

to the magnetoviscous-thermal instability (MVTI) (Islam 2012), the collisionless MVTI or

CMVTI. We also demonstrate that quadratic estimates of heat fluxes and Reynolds stress

are of the right form to drive accretion in this dilute thick flow. In §6 we summarize our

main results as well as describe directions for further research.

2. Variables and Nomenclature

Our coordinate system for the rotating disk is a cylindrical system located about

the central mass. R is the radial coordinate, φ is the azimuthal angle, and z the vertical

coordinate aligned along the axis of rotation.
(
R̂, φ̂, ẑ

)
refer to unit vectors in the radial,

azimuthal, and vertical directions, respectively. For field variables of temperature T ,

pressure p, density ρ, electric and magnetic fields E and B, and pressure p, we use the

following notation:
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• Equilibrium value of, say density: ρ0,

• Perturbed density: δρ,

• Total density (equilibrium + perturbed): ρ = ρ0 + δρ.

For velocity, we use the following notation:

• Primary equilibrium flow velocity, which is azimuthal: V0 = RΩ(R)φ̂, where Ω(R) is

the orbital angular velocity,

• Perturbed flow velocity: δu,

• Total flow velocity: V = RΩ(R)φ̂+ u.

Components of an equilibrium vector quantity, such as the radial component of the

equilibrium magnetic field, are written as BR0. The radial component of, for instance, the

perturbed magnetic field is denoted as δBR.

In this paper, we consider an electron-ion plasma. In these systems, the ions and

electrons are only very weakly coupled collisionally, so the pressure of both species may

differ significantly. In an electron-ion plasma, pi refers to ion pressure, pe to electron

pressure. Quantities such as equilibrium ion pressure will be denoted as p0, while perturbed

species variables such as perturbed ion pressure are denoted as δpi. Finally, in a collisionless

MHD plasma we find it convenient to consider fluid properties, such as parallel p‖ and

perpendicular p⊥ pressure, that are velocity moments of the particle distribution function.

For example, the equilibrium ion parallel pressure is defined as pi‖0 and the perturbed ion

parallel pressure is δpi‖.
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3. The Drift Kinetic And Constituent Equations in Rotating Frame

In this section we state the equations and disk equilibrium used in the eigenmodal

analysis and the demonstration of quadratic heat flux of the CMVTI. Without derivation

(see, e.g., Hinton & Hazeltine (1976); Sharma et al. (2003); Sharma & Hammett (2006)), the

collisionless drift kinetic equation in a rotating frame can be shown to be of the following

form,(
∂

∂t
+ Ω

∂

∂φ

)
(fsB) +∇ ·

([
v‖b + u⊥

]
fsB

)
+

∂

∂v‖

(
fsB

[
Zse

ms

E‖ +
1

msn0

b · ∇ps0
])

+

∂

∂v‖

(
fsB

[
−b ·

([
∂

∂t
+ Ω

∂

∂φ

]
u⊥ +

[
v‖b + u⊥

]
· ∇u⊥

)
+ µB∇ · b+

2Ωẑ · (b× u)− bφR
(
u⊥ + v‖b

)
· ∇Ω

])
= 0,

(1)

fs is the species particle distribution function, and ms and Zs is the mass and charge

of a particle of species s. v‖ is the component of corotating velocity along the magnetic

field, and µ is the magnetic moment (mv2⊥/ (2B)). Additional terms appear in the

formulation of Eq. (1) that do not appear explicitly in the normal drift-kinetic equation

of Kulsrud (1983): non-inertial rotational accelerations along the magnetic field,

2Ωẑ · (b× u)− bφR
(
u⊥ + v‖b

)
· ∇Ω, and accelerations along the magnetic field associated

with large thermal energies, 1/ (msn0)b · ∇ps0.

Next, the form of the full MHD force balance and induction equations in a co-rotating

frame are given by,

ρ

([
∂

∂t
+ Ω

∂

∂φ

]
u + u · ∇u− 2Ωu× ẑ +Ru · ∇Ωφ̂

)
=

1

c
J×B +

n

n0

∇p−∇ · P, (2)

∂B

∂t
= −u · ∇B−B (∇ · u) + B · ∇u +Rφ̂B · ∇Ω− Ω

∂B

∂φ
. (3)

Where p = pe + pi, P = p⊥I +
(
p‖ − p⊥

)
bb, p‖ = pi‖ + pe‖, and p⊥ = pi⊥ + pe⊥. Parallel,
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perpendicular, and total pressures are given by their standard forms,

ps‖ = 2π

∫
ms

(
v‖ − u‖

)2
fs
(
B dµdv‖

)
, (4)

ps⊥ = 2π

∫
msµBfs

(
B dµdv‖

)
, (5)

ps =
2

3
ps⊥ +

1

3
ps‖. (6)

In this paper we analyze the stability and quadratic transport of an equilibrium

geometrically thin nonradiative, collisionless disk at its midplane. For simplicity,

temperature is independent of height above the disk. To lowest order there is no net current,

the plasma velocity is purely azimuthal, and the equilibrium magnetic field is nonradial and

axisymmetric. Therefore, the electron and ion pressure and density as a function of vertical

coordinate z goes as,

ni0, ne0, pi0, pe0 ∼ exp

(
− z2

2H2

)
. (7)

The disk scale height H is given by,

H2 =
kB (Ti0 + Te0)

(mi +me) Ω2
. (8)

The equilibrium solution to Eqs (1) is,

fs0 =
n0(z = 0)

(2πkBTs0/ms)
3/2

exp

(
− z2

2H2
−

msv
2
‖

2kBTs0
− msµB

kBTs0

)
. (9)

The equilibrium magnetic field B0 and its vector normal b0 are,

B0 = B0

(
φ̂ sinχ+ ẑ cosχ

)
, (10)

b0 = φ̂ sinχ+ ẑ cosχ. (11)

Global equilibria of axisymmetric, and at least partially rotationally supported,

plasmas (Hinton & Hazeltine 1976; Bisnovatyi-Kogan & Seidov 1985; Ogilvie 1997) are

characterized by a complicated global geometry due to the requirements of centrifugal force
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balance and equilibrium along axisymmetric magnetic surfaces. Local analysis away from

the disk midplane, or global analysis of the longer wavelength CMVTI in a high-aspect

ratio collisionless accretion disk, is beyond the scope of this paper.

4. Turbulent and Wave Fluxes For Dilute Rotating Plasmas

The evolution equation for the total energy within a disk, using methods outlined in

Balbus & Hawley (1998), is given by the following (see, e.g., Sharma & Hammett (2006)):(
∂

∂t
+ Ω

∂

∂φ

)(
1

2
ρu2 +

3

2
p+

B2

8π

)
+∇ · FE − ρu ·

1

ρ0
∇p0 =

− ∂Ω

∂ lnR
WRφ −R

∂Ω

∂z
Wzφ −Q−.

(12)

A fuller derivation of Eq. (12) can be found in, e.g., Islam (2007). FE is the heat flux arising

from local fluctuations, WRφ is the azimuthal stress, Wzφ is the vertical-azimuthal stress,

Q− is a radiative loss term. One may look to Sharma & Hammett (2006); Islam (2007), for

fuller derivations of the energy balance term including the pressure expression term. In the

context of disk accretion theory, the above expresses the fact that energy is generated by

azimuthal stresses that couple to the free energy available from radial and vertical angular

velocity gradients. This energy can then be accounted for in various ways: in a classical

accretion disk, the energy flux is almost wholly radiated away; in a geometrically thick

accretion disk, turbulent heat fluxes are large enough to transport at least some of this

viscously generated energy (Balbus & Hawley 1998; Balbus 2003). Even in collisionless

accretion, turbulent energy generation may heat electrons until they become radiatively

efficient at locally dissipating energy (Sharma et al. 2007). However, in nonradiative flows

(Narayan et al. 1998), viscously generated energy must be carried away by a turbulent heat

flux (Balbus 2004).
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The energy flux is given by,

FE = u

(
1

2
ρu2 +

5

2
p

)
+

1

4π
B× (u×B) + bq + pv

(
[u · b]b− 1

3
u

)
. (13)

The first term in FE corresponds to flux of gas kinetic energy, the second to the enthalpy,

and the third term corresponds to Poynting MHD flux. The heat flux q = qi + qe and

pressure difference pv = pvi + pve are defined in, e.g., Chang & Callen (1992a,b) in the

context of heat flux expressions to model collisionless transport due to specific instabilities

into a fluid formalism, and shown here,

qs =
1

2
qs‖ + qs⊥,

qs‖ = 2π

∫
ms

(
v‖ − u‖

)3 (
B dµdv‖

)
fs,

qs⊥ = 2π

∫
ms

(
v‖ − u‖

)
(µB)

(
B dµ, dv‖

)
fs.

(14)

psv = ps‖ − ps⊥. (15)

The fourth and fifth terms of Eq.( 13) correspond to contributions due to heat fluxes along

the magnetic field and the viscous stress. WRφ and Wzφ are given by,

WRφ = ρuRuφ −
BRBφ

4π
+ pvbRbφ, (16)

Wzφ = ρuzuφ −
BzBφ

4π
+ pvbzbφ. (17)

The angular momentum flux can be derived from MHD force balance and continuity, and

for an accretion disk is given by (Balbus & Hawley 1998; Islam 2007),(
∂

∂t
+ Ω

∂

∂φ

)
(ρR [uφ +RΩ]) +

∇ ·R
(
ρu [uφ +RΩ]− BφB

4π
+ pvbφb +

[
p⊥ +

B2

8π

]
φ̂

)
= 0.

(18)

To understand how local fluctuations about mean quantities of the form A = A0 + δA,

whether waves or turbulence, can tap into sources of energy within this rotating system,

it is easiest to consider the truncated dynamics of this system by averaging vertically and
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azimuthally. Define the following averaged quantity:

〈A〉 =
1

H

∫ 2π

0

∫ z=∞

z=−∞
Adz dφ, (19)

and consider fluctuations which spatially average to zero, i.e. 〈δA〉 = 0. Contributions of

fluctuations appear at second order. Since in equilibrium u0 = 0, p‖0 = p⊥0 = p0, q0 = 0,

and qv,0 = 0, the energy and angular momentum equations are,

∂ 〈L〉
∂t

+
1

R

∂

∂R

(
R3Ω 〈ρuR〉+R 〈WRφ〉

)
= 0, (20)

∂ 〈E〉
∂t

+
1

R

∂

∂R
R 〈FER〉 − 〈ρuR〉

1

ρ0

∂p0
∂R

= − ∂Ω

∂ lnR
〈WRφ〉 −Q−. (21)

We have ignored the flux of gas kinetic energy, that appears at third order in fluctuating

quantities, and the Poynting flux, which is subdominant to the other terms in the energy

flux. We have taken Wzφ to be an even function of height. From Eq. (11), the equilibrium

azimuthal component of the magnetic normal vector is cosχ.

〈L〉 = 〈ρR (uφ +RΩ)〉 , (22)

〈E〉 =

〈
1

2
ρu2 +

1

2
p‖ + p⊥ +

B2

8π

〉
, (23)

〈WRφ〉 =

〈
ρ0δuRδuφ −

δBRδBφ

4π
+ δpvδbR sinχ

〉
, (24)

〈FER〉 =
5

2
ρ0 〈δuRδθ〉+ 〈δqδbR〉 −

1

3
〈δpvδuR〉 . (25)

Note that the radial mass flux term 〈ρuR〉 = 〈δρδuR〉 + ρ0uR2, where uR2 is a second order

steady bulk radial flow of matter with magnitude of order |δρ/ρ0|2; as noted by Balbus

(2003), in a steady-state geometrically thin disk, the net radial matter flux has a magnitude

given by |〈ρuR〉| ∼ ρ
∣∣〈u〉2∣∣ / (RΩ).

5. Stability Analysis And Quadratic Heat Fluxes

The discussion of the CMVTI is divided into the following subsections. §5.1 and 5.2

describe the eigenmodal equations, and collisionless pressure expressions, used to derive the
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full dispersion relation for the CMVTI, which is not shown in this work. In the limit of zero

equilibrium pressure and temperature gradients, the CMVTI reduces to the collisionless

MRI. §5.3 estimates quadratic modal expressions for heat flux and Reynolds stress from the

CMVTI. We find it useful to use the following variables and scalings:

θ0 =
kBT0
mi

v2A =
B2

0

4πρ0

x = k‖vA/Ω

k̂ = kvA/Ω

γ = Γ/Ω

αP = −
(
θ
1/2
0 /Ω

) ∂ ln p0
∂R

αT = −
(
θ
1/2
0 /Ω

) ∂ lnT0
∂R

β = θ0/v
2
A.

(26)

Our expression for the Alfvén speed vA differs by a factor of
√

2 from the standard definition.

We also explore the stability of stratified media that are convectively stable, hence one in

which αS < 0 or equivalently αT <
2
5
αP . All plots of dispersion relations, heat fluxes, and

Reynolds stresses use a plasma equilibrium with χ = π/4 (equal equilibrium toroidal and

vertical magnetic field components), plasma β = 102, Keplerian rotation profile Ω ∝ R−3/2,

and purely vertical wavenumbers.

5.1. Perturbed Axisymmetric Distribution Function at the Mid-plane

Here we consider an equilibrium density and temperature distribution given

in §2. Assume axisymmetric perturbations to equilibrium quantities of the form

δa ∝ exp (ikRR + ikZz + Γt), and define k‖ = k · b0. Eq. (1) then reduces to the following

form for ions and electrons, where we assume equal scale heights of radial and vertical ion
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and electron temperature gradients:

δfi/fi0 =
miv‖
kBTi0

(
−ik‖µδB + eδE‖/mi

Γ + ik‖v‖
−

(2Ω + Ω′R) Γ + ik‖v‖Ω
′R

ik‖
(
Γ + ik‖v‖

) B̄R sinχ

)
−

B̄R

ik‖

(
∂ lnn0

∂R
− 3

2

∂ lnT0
∂R

+

(
miµB0

kBTi0
+

miv
2
‖

2kBTi0

)
∂ lnT0
∂R

)
+
B̄Rv‖∂ ln p0/∂R

Γ + ik‖v‖
,

(27)

δfe/fe0 =
mev‖
kBTe0

(
−ik‖µδB − eδE‖/me

Γ + ik‖v‖
−

(2Ω + Ω′R) Γ + ik‖v‖Ω
′R

ik‖
(
Γ + ik‖v‖

) B̄R sinχ

)
−

B̄R

ik‖

(
∂ lnn0

∂R
− 3

2

∂ lnT0
∂R

+

(
meµB0

kBTe0
+

mev
2
‖

2kBTe0

)
∂ lnT0
∂R

)
+
B̄Rv‖∂ ln p0/∂R

Γ + ik‖v‖
.

(28)

Terms with Ω arise due to the fact that the plasma is rotating; terms with equilibrium

gradients of temperature, density, or pressure may drive convective and free energy

gradient instabilities. δE‖ is the electric field that ensures quasineutrality, i.e.∫
δf 0

i B dµ =
∫
δf 0

eB dµ. One can demonstrate that in the limit of dominating ion thermal

energy Ti0 � Te0 that the electric field δE‖ and electron dynamic terms (such as δpe⊥,‖)

become unimportant in describing the plasma dynamics. This is the simplification employed

by Quataert et al. (2002) and Sharma et al. (2003). However, with equilibrium electron

temperatures up to one-tenth that of the ion temperatures, as implied by local nonlinear

simulations of the collisionless MRI (Sharma et al. 2007), the CMVTI dispersion relation

is not substantially altered. Fig. (1) shows that the dispersion relation of the CMVTI

is not significantly different between cases where the electron temperature is negligible

(Te0 = 10−2Ti0) and where the electron temperature equals the ion temperature.

Using the induction equation Eq. (3) and the continuity equation, the total force

balance equation, Eq. (2), is represented by the following in terms of Eq. (26):

γ2B̄− γ2b0

(
δρ

ρ
− αP − αT

ixβ1/2
B̄R

)
+ 2

d ln Ω

d lnR
B̄RR̂+ 2γ sinχ

(
δρ

ρ
− αP − αT

ixβ1/2
B̄R

)
R̂+

2γẑ × B̄ = k̂xβ
δp⊥
p0

+ x2β
δp‖ − δp⊥

p0
b0 − ixβ1/2αP

δρ

ρ
R̂− x2B̄ + k̂x

δB

B
,

(29)

δB/B = B̄φ sinχ−(kR/kZ) B̄R cosχ, δp‖ = δpi‖+δpe‖, and δp⊥ = δpi⊥+δpe⊥. Contributions

due to δρ/ρ − (αP − αT ) /
(
ixβ1/2

)
B̄R arise from finite plasma compressibility; in the
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Boussinesq limit these terms are set to zero. The eigenvalue problem consists of three

equations for solving B̄R, B̄φ, and δρ/ρ: radial force balance, azimuthal force balance, and

force balance along b0.(
γ2 + x2

[
1 +

k2R
k2Z

]
+ 2

d ln Ω

d lnR
− 2γ sinχ

αP − αT
ixβ1/2

)
B̄R −

(
2γ + x2 tanχ

kR
kZ

)
B̄φ+

δρ

ρ

(
2γ sinχ+ ixβ1/2αP

)
=

kR
kZ cosχ

x2β
δp⊥
p0

,

(30)

(
γ2 sinχ

αP − αT
ixβ1/2

+ 2γ

)
B̄R +

(
γ2 + x2

)
B̄φ − γ2 sinχ

δρ

ρ
= x2β

δp‖ − δp⊥
p0

sinχ, (31)

B̄R

(
γ2
αP − αT
ixβ1/2

− γ2kR
kZ

cosχ+ 2γ sinχ

)
+ γ2 sinχB̄φ − γ2

δρ

ρ
= x2β

δp‖
p0
, (32)

δp⊥ and δp‖ are linear functions of B̄R, B̄φ, and δρ/ρ. In subsequent subsections we explore

the dispersion relation associated with the rotational magnetothermal and magnetoviscous

instabilities. We work in the limit of small electron thermal energies. Therefore, subsequent

expressions for perturbed and equilibrium pressure will refer to the ionic component (e.g.,

δpi,⊥ → δp⊥, pi0 → p0, pi0 → p0, Ti0 → Ti).

5.2. Expressions For Perturbed Pressure

In this section we derive expressions for the perturbed parallel and perpendicular

pressures, used in closing the eigenmodal equations for the CMVTI (Eqs. [30, 31, 32]). From

Eq. (27), expressions for perturbed parallel and perpendicular pressure can be simplified

into a linear combination of density, δB/B, and B̄R,

δp⊥
p0

=
δρ

ρ
− δB

B
(R (iζ)− 1) +

B̄R

ik‖

(
∂ lnn0

∂R
− ∂ ln p0

∂R

)
, (33)

δp‖
p0

=

(
1− 2ζ2R (iζ)

R (iζ)

)
δρ

ρ
−
(

1− [1 + 2ζ2]R (iζ)

R (iζ)

)
δB

B
+

B̄R

ik‖

(
1− 2ζ2R (iζ)

R (iζ)
× ∂ lnn0

∂R
− ∂ ln p0

∂R

)
.

(34)
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ζ = Γ/
(
k‖θ0
√

2
)

and R (ζ) is the plasma response function,

R (ζ) =
1√
π

∫ ∞
−∞

xe−x
2

x− ζ
dx. (35)

Since the phase velocity of the modes are at best of order the sound speed, i.e. |ζ| <∼ 1,

these perturbations are not adiabatic and the opposite, slow wave (|ζ| � 1) limit, holds for

most unstable wavenumbers. The plasma response function in the slow wave limit is,

R (iζ) = 1− ζ
√
π +O

(
ζ2
)
. (36)

Expressions for perturbed pressure reduce to the following, to first order in ζ:

δp‖
p0
→ δρ

ρ
+
√
πζ
δB

B
− ξR

∂ lnT0
∂R

, (37)

δp⊥
p0
→ δρ

ρ
−
√
πζ
δB

B
+ ξR

(
3
∂ lnn0

∂R
− ∂ ln p0

∂R

)
. (38)

From the radial component of Eq. (3), B̄R = ik‖ξR, where ξR is the radial fluid displacement.

Dispersion relations for the CMVTI are displayed in Fig. (2). One feature of the plasma

response via the CMVTI is that of relatively strong collisionless Barnes damping of

magnetohydrodynamic modes along the magnetic fields for long wavelength modes

k‖ < Ω/θ
1/2
0 , such that at these wavenumbers the phase velocity remains of the order of

the sound speed. This feature has been noted in previous studies of the collisionless MRI

(Quataert et al. 2002; Sharma et al. 2003). This damping has the effect of suppressing

pressure variations for sufficiently small wavelengths. As the equilibrium plasma β decreases

to order 1 and smaller the effects of anisotropic pressure become insignificant over much

of the range of unstable wavenumbers. Dispersion relations for the CMVTI are similar

to the MVTI (Islam 2012). The range of unstable wavenumbers match between fluid and

collisionless analogues:

0 ≤ k2v2A/Ω ≤ 2

∣∣∣∣d ln Ω

d lnR

∣∣∣∣+ αPαT . (39)

Instead of collisionless damping in the case of the instabilities analyzed within this paper, in

fluid treatments it is finite (but dynamically important) viscosity and thermal conductivity
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Fig. 1.— Plot of the real part of the growth rate of the CMVTI, for the case where the

ion temperature is much larger than the electron temperature Ti0/Te0 = 102, and the case

where they are equal. αP = 5, and αT = 2 – marginal convective stability. This figure, and

a more comprehensive plasma response incorporating electron pressure dynamics and finite

equilibrium electron temperature, is taken from Islam (2007).
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Fig. 2.— Plot of the real part of the growth rate for the CMVTI and different equilibrium

radial temperature gradients. Here αP = 5 and different αT = 0, such that 0 < αT <
2
5
αP ,

so that the plasma remains convectively stable.
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that plays this role. Fig. 1 from Islam (2012), showing the real part of the dispersion

relation for the MVTI for a dynamically important viscous diffusion coefficient, realistic

Prandtl number, for a range of convectively stable equilibria. Efficient viscosity and

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

k×vA�W

G
�W

Α
T =

0 HΑ
S =
-20�3L

Α
T =

1 HΑ
S =
-5L

Α
T = 2 HΑ

S =
-10�3L

Α
T = 4 HΑ

S = 0L

Fig. 3.— Plot of the real portion of the growth rate for th MVTI various αT . αP = 10, viscous

diffusion coefficient νΩ/v2A = 102, Prandtl number Pr = 1/101, and αS = 5αT/3 − 2αP/3.

Rollover occurs at wavenumbers k ∼
√

Ω/ν � Ω/vA.

thermal diffusivity dissipates the MVTI at wavelengths such that νk2 <∼ Ω, where ν is a

viscous diffusion coefficient along magnetic field lines (Islam & Balbus 2005; Islam 2012).

Fluid simulations that model collisionless damping as a form of fluid transport (Sharma

& Hammett 2006; Sharma et al. 2007), do so with heat fluxes whose thermal diffusion

coefficients are on the order of θ0/Ω.
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5.3. Quadratic Fluxes

Here, we determine the normalized quadratic heat flux, Eq. (25), and the radial

azimuthal stress, Eq. (24), associated with a given mode of purely vertical wavenumber kZ .

We normalize these fluxes as a function of fixed Lagrangian radial displacement ξR = δuR/Γ.

From Eq. (27), we have the following expressions for δu‖, δq‖, and δq⊥.

δu‖

θ
1/2
0

= −iζ
√

2R (iζ)

(
δB

B
− 2ΩΓ

k2‖θ0
B̄R sinχ+

iB̄R

k‖

(
∂ ln pi0
∂R

))
+
iB̄R

k‖
sinχΩ′R, (40)

δq‖

p0θ
1/2
0

=

(
iζ
√

2

(
δB

B

)
− B̄R

k‖

(
∂ ln p0
∂R

)
ζ
√

2− Ωζ2

k‖θ
1/2
0

iB̄R cosχ

)([
2ζ2 + 3

]
R (iζ)− 1

)
,(41)

δq⊥

p0θ
1/2
0

= −iζ
√

2

(
δB

B

)
R (iζ) . (42)

Expressions for the heat flux and radial-azimuthal stress for these axisymmetric modes at

the disk midplane are given by the following:

WRφ = Re
(
ρ0δu

∗
Rδuφ − v2AB̄∗RB̄φ + sinχB̄∗Rδpv

)
, (43)

FER = Re

(
5

2
δu∗Rδθ − δqB̄∗R −

1

3
δpvB̄

∗
R

)
. (44)

One can employ expressions for the total pressure (Eq. [6]), pressure difference (Eq. [15]),

and total heat flux (Eq. [14]) with expressions for the perturbed pressures (Eqs. [33] and

[34]) and heat fluxes given (Eqs. [41] and [42]). The form of the relative perturbed density

and toroidal magnetic field δρ/ρ and B̄φ are described in the eigenvalue equations (Eqs. [30],

[31], and [32]). Using variable scalings as given by Eq. (26), expressions for δuR, B̄R, B̄φ,
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δuφ, δpv, δθ, and δq in terms of ξR are,

δuR = γ (ΩξR) , (45)

B̄R = ix

(
Ω

vA
ξR

)
, (46)

B̄φ =−
2γ
(

cos2 χ+R
(

iγ
x
√
2β

sin2 χ
))
− ixβ1/2αP sinχ

[
R
(

iγ
x
√
2β

)
− 1
]

γ2
(

cos2 χ+R
(

iγ
x
√
2β

)
sin2 χ

)
+ x2 − 2x2β sin2 χ

[(
1 + γ2

2x2β

)
R
(

iγ
x
√
2β

)
− 1
]×

ix

(
Ω

vA
ξR

)
,

(47)

δuφ =
γ

ix
vAB̄φ

(
cos2 χ+R

(
iγ

x
√

2β

)
b2φ0

)
+

(ΩξR)

(∣∣∣∣d ln Ω

d lnR

∣∣∣∣− sinχ

[
2γ2

x2β
sinχ+ iαP

γ

xβ1/2

]
R

(
iγ

x
√

2β

))
,

(48)

δpv =
(
p0H

−1ξR
)([ γ2

x2β
− 1

]
R

(
iγ

x
√

2β

)
+ 1

)
+

2

(
p0B̄φ sinχ− iβ−1γ

x
p0ξR

Ω

vA

)([
1 +

γ2

2x2β

]
R

(
iγ

x
√

2β

)
− 1

)
,

(49)

δθ

θ0
=
δp

p0
− δρ

ρ
=
(
ξRH

−1)(αT + αP

([
5

3
+

γ2

3x2β

]
R

(
iγ

x
√

2β

)
− 5

3

))
+

1

3
B̄φ sinχ

([
γ2

2x2β
− 1

]
R

(
iγ

x
√

2β

)
+ 1

)
−

2

3
iβ−1

γ

x
sinχ

(
Ω

vA
ξR

)([
1 +

γ2

x2β

]
R

(
iγ

x
√

2β

)
− 1

)
,

(50)

δq = (p0ΩξR) sinχ

(
iαP

γ

xβ1/2
+

2γ2

x2β

)([
3

2
+

γ2

2x2β

]
R

(
iγ

x
√

2β

)
− 1

2

)
+

i
(
p0θ

1/2
0 B̄φ

) γ

2xβ1/2
sinχ

([
1 +

γ2

x2β

]
R

(
iγ

x
√

2β

)
− 1

)
.

(51)

The azimuthal stress is normalized in units of ρ0Ω
2 |ξR|2 and the heat flux in terms of

ρ0θ
1/2
0 Ω2 |ξR|2 ≡ p0ΩH

−1 |ξR|2. The relatively involved quadratic expressions for angular

momentum and heat flux are not shown. In Figs. (4) and (5) are plots of the heat flux and

azimuthal stress for the CMVTI for different 0 < αT <
2
5
αP .
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Fig. 4.— Outwards normalized azimuthal stress for the CMVTI and various convectively

stable equilibrium profiles with αP = 5 and 0 ≤ αT ≤ 2.

21

LLNL-JRNL-639918



0.5 1 1.5 2 2.5 3 3.5 4

k×vA�W

2.5

5

7.5

10

12.5

15

17.5

20

q
R
�
H
P
W
H
-
1
È
Ξ
R
È
2
L

ΑP = 5, ΑT = 0

ΑP = 5, ΑT = 1�2

ΑP = 5, ΑT = 1

ΑP = 5, ΑT = 3�2

ΑP = 5, ΑT = 2

Fig. 5.— Same as Fig. (4), except for quadratic heat flux.
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One can easily demonstrate, by setting αP = αT = 0, that the heat flux for the

collisionless MRI is zero. There are no equilibrium radial gradients of temperature or

density, the growth rate is purely real, so that for a given mode the temperature and

viscous pressure perturbations are out of phase with the perturbed radial velocity, and

the perturbed heat flux is out of phase with the perturbed radial magnetic field. The

salient features of these instabilities is that they produce the right type of azimuthal stress

that can drive accretion. The general sense of the Reynolds stress is outwards for all

unstable wavenumbers for the CMVTI; however, Islam (2012) demonstrates that the MVTI

can have a generally small range of small wavenumbers for even an unstable Keplerian

rotational profile in which the azimuthal stress is negative. Finally, even in the absence of

rotational shear Ω′R = 0 the effects of a heat flux can also transport angular momentum

outwards; this is demonstrated in Fig. (6). Surprisingly, the CMVTI, even in the absence

of differential rotation, is more effective at transporting angular momentum outwards than

the MVTI. For comparison, Fig. (7) reproduces Fig. 7 from Islam (2012), and demonstrates

that for a substantial portion of unstable wavenumbers, the modal MVTI Reynolds stress

is inwards rather than outwards. As noted in Islam (2012), in the absence of rotational

shear, no energy can be extracted from the flow (see Eq. (21)). Second, the ambiguity of

angular transport for the CMVTI is analogous to the MVTI, in that the CMVTI acts as a

mechanism to transport thermal energy outwards, largely (and, in the case of rigid rotation,

completely) independent of the manner in which it transports angular momentum. A first

step to understand the CMVTI would be to explore unambiguous measures of turbulent,

saturated angular momentum and heat flux in local simulations that are marginally stable

to the CMVTI and MVTI.
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Fig. 6.— Plot of the azimuthal stress for the CMVTI and zero rotational shear, and various

convectively stable equilibrium profile.

6. Summary of Results and Further Work

In this paper we have derived the drift kinetic equation explicitly in a rotating frame

with possible significant gas pressures and only mild collisionality, with application to

hot, dilute, weakly-magnetized (in the sense that magnetic forces are subdominant in

equilibrium), at best mildly relativistic systems such as as dim accretion about supermassive

black holes. §6.1 describes the main results of this paper. §6.2 elaborates on the main

directions for future work.
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Fig. 7.— Normalized flux 〈TRφ〉 /
(
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)
for a rigid rotation profile (Ω′R = 0), and

convectively stable equilibria, for the MVTI. αS = 5αT/3− 2αP/3.

6.1. Summary of Results

We see physical terms explicitly associated with disk stratification as well as rotation.

We also see that one may rather easily derive modifications of the azimuthal stress and

heat flux due to fluctuations or waves in accreting systems (Balbus & Hawley 1998; Balbus

2003) due to dilute plasmas, as demonstrated in §4, in order to characterize how or whether

instabilities may create the right type of turbulence that drives accretion.

We have analysed the CMVTI, which have been demonstrated (Islam & Balbus 2005;

Islam 2012) from a fluid treatment to destabilize a plasma, through anisotropic viscosities

and thermal conductivities, that possesses adverse angular velocity or temperature

gradients. We demonstrate the congruence in the dispersion relation for the CMVTI with
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the MVTI. Heat fluxes and azimuthal stresses associated with this instability have the right

sense (i.e., positive), to drive accretion in fat dilute nonradiative rotating plasmas, and

roughly match their respective fluid counterparts. Furthermore, we note that expressions

for the normalized pressure and heat gradients, αP and αT , go as H/R if we assume

that equilibrium temperature and pressure radial scale heights are of order the disk

radius. Therefore, we expect only geometrically thick disks to efficiently transport angular

momentum in nonradiative accretion flows.

6.2. Future Work

Although we have applied the drift-kinetic equation to a single but important class of

instability in Keplerian-like rotating systems, its representation as given in Eq. (1) lends

itself to much richer studies of these types of dilute plasmas. Immediate analytic work can

enhance our understanding of the stability of a collisionless nonradiative accretion disk to

the CMVTI. Due to the requirement of geometrically thick disks to efficiently transport

angular momentum without radiative losses, a global stability analysis with realistic disk

structure is needed.

Fluid MHD models of local nonlinear evolution in collisionless astrophysical plasmas

have employed prescriptions to model collisionless and fast, small-length scale isotropizing

phenomena. First, Landau fluid expressions of heat flux and viscosity represent, as practical

as is possible, the collisionless momentum and heat transport driven by the instabilities of

interest. And second, a hard wall on relative ionic pressure anisotropies reflects observations

of marginal pressure anisotropy in the solar wind (Hellinger et al. 2006; Bale et al. 2009),

due to unresolvable fast (on the order of the ion gyroperiod) and short wavelength (on the

order of the ion gyroradius) instabilities driven by pressure anisotropy. Similar pressure

anisotropies are found to develop for the CMVTI, as shown by a more comprehensive
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stability analysis Islam (2007). Although these prescriptions have been fruitfully applied to

local simulations of the collisionless MRI (Sharma & Hammett 2006; Sharma et al. 2007)

and the buoyancy instability (Kunz et al. 2012), a more self-consistent numerical model is

desired.

A more productive approach would be to use gyrokinetic or drift-kinetic MHD codes,

such as Fokker-Planck (Grandgirard et al. 2006), ionic particle in cell (Kolesnikov et al.

2010; Chen & Parker 2009), or hybrid PIC (Brecht & Thomas 1988) modified such that ions

move drift-kinetically, to simulate the dynamics of these plasmas. Recent work in modifying

full particle in cell (Riquelme et al. 2012) and 3D hybrid particle in cell (Kunz et al. 2014)

for co-rotating local reference frames has found promise in the study of the collisionless

differentially rotating plasmas, currently under situations in which the separation of length

and time scales with ion gyromotion, disk rotational frequency, and the fastest growing

wavelengths of the MRI are not too severe. These numerical models have shown promise in

understanding the nonlinear development of initially weak-field (ion gyroradius larger than

the wavelength of the fastest growing mode) magnetotational instabilities (Krolik & Zweibel

2006; Ferraro 2007). Enhancements to these codes towards larger spatial and temporal

separations between ion gyromotion and the slower, longer scale dynamics of collisionless

MHD make them well suited towards understanding the nature of heat flux and angular

momentum transport in the CMVTI.
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